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Semiclassicall quantization in a.prolate cavity via the 
adiabatic switching method: evolution of the classical actions 

F Brut 
Institut des Sciences NucEaires, F-38026 Grenoble Ckdex, France 

Received 13 July 1992, in final form 24 February 1993 

Ahtract. Invariance of the actions which are the classical counterparts of the quantum 
numbers is very often postulated in adiabatic switching calculations but never checked 
carefully. In the particular case of a free particle moving in a prolate cavity deformed 
adiabatically at constant volume, time evolution of the classical actions is presented. 
Starting from semiclassical energies in a spherical cavity, the classical actions are 
calculated for each trajectory at each step of the switching procedure. This can be 
performed for any deformation since the system is separable in suitable coordinates. 
Invariance of the actions is not well verified for few values of the deformation. If it is easily 
understood why the actions invariance fails when the semiclassical solution cross the 
separatrix for the L,=O levels, such failures are in principle not expected for the L,#O 
levels for which the trajectories belong to only one topology. The intrinsic frequencies of 
the motion are thus calculated for each trajectory at each step of the switching. Then, it i s  
shown that failures in the action invariance o m  exactly for values of the deformation for 
which two intrinsic frequencies become commensurate. For these particular values, the 
semiclassical trajectories are resonant for the L,#O levels and periodic for the L,=O 
levels. By an appropriate canonical transformation on the action variables, a better 
invariant than the actions themselves has been built in the neighbourhood of each 
resonance. Apart from the particular values of the deformation where the radial and the 
angular frequencies become commensurate, action invariance is verified with B very good 
accuracy during the adiabatic switching. 

1. Introduction 

In the precedingpaper [l], referred to as I, the adiabatic switching approximation was 
applied successfully to obtain the semiclassical eigenenergies in a simple but non- 
trivial two-dimensional system. Here, we study the Same system, namely the motion 
of a free particle inside a spheroidal prolate cavity which is adiabatically deformed at 
constant volume, to determine how the classical actions are conserved during the 
switching. This paper is to be read in conjunction with paper I, whose notation is 
extensively used and whose equations are denoted as (1-1). (1-2), etc. 

The system we study is always separable in a suitabie system of coordinates for any 
deformation of the prolate cavity; thus classical tori are present everywhere in phase 
space and the classical actions can be calculated for any deformation. Under adiabatic 
changes of the shape of the cavity classical actions which are the classicai equivalents 
of quantum numbers must in principle remain constant as a consequence of the 
Ehrenfest, hypothesis [2]. In many adiabatic switching calculations-see numerous 
references in I-invariance of the actions is more often postulated than numerically 
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verified. In the particular system studied here, it is possible to calculate in a 
reasonable amount of computing time the classical actions at each step of the 
switching and for every trajectory. One of the possible tests of the validity of the 
method is based on a comparison between the exact semiclassical or quantum energy 
and the energy obtained by using the adiabatic switching method. As we saw in I, 
randomly chosen initial conditions are used to cancel the small oscillations around the 
mean energy which are linked to the finite switching time used in practical calcula- 
tions. This necessary method of averaging over different energies obtained for each 
random initial condition gave a second test of confidence in the method in previous 
calculations a small standard deviation around the averaged energy calculated at the 
end of the switching was considered as good evidence of the validity of the method. In 
fact, this standard deviation can be reduced by increasing the switching time, on one 
hand, and by increasing the number of initial conditions, on the other hand. Thus, a 
small standard deviation on the energy at the end of the switching procedure is not a 
sufficient criterion to ensure the validity of the method. In fact, we will show 
surprising results on some unexpected behaviour of classical quantities for the 
adiabatically changed prolate cavity even when the standard deviations on the energy 
remain small. 

Starting in a spherical cavity with an initial condition which fullils the EBK 
quantization conditions [3], the cavity is changed adiabatically in a prolate shape at 
constant volume. Of course, the dynamical quantities which define the motion of the 
particle are only changed ai bounces on the moving boundary. Therefore, the energy, 
the angular momentum, but not its projection on the symmetry axis, are modified as 
well as any other quantities which depend on the velocity. After each bounce on the 
boundary, the particles restart on a new trajectory for which it is possible again to 
calculate the turning points needed for the determination of classical actions. In 
section 2, we present the time evolution of the two actions which are specific to the 
system, for different initial conditions and during the adiabatic switching. For the 
L, = 0 levels, the crossing of separatrix by the adiabatic semiclassical solution is seen 
by a failure of the conservation of classical actions. This feature is present as expected, 
although we showed in I, that being in the neighbourhood of the separatrix does not 
affect the quality of agreement between exact and adiabatic semiclassical energies. 
For L,#O levels, as well as for L,=O levels but for other deformations than the 
special value corresponding to the crossing of separatrix, strange behaviours of the 
classical actions are still present during the switching procedure in well localized areas. 
Explanation of these facts requires the determination of intrinsic frequencies of the 
system which is presented in section 3. For some precise values of the deformation in 
the prolate cavity, two intrinsic frequencies of the motion become commensurate and 
correspond exactly to the regions where classical quantities have strange behaviours. 
Only primary resonances notably affect the conservation of actions. For these 
particular values, by a canonical transformation on the actions and angles variables, it 
is possible to build other invariants which are less seniitive to crossings of resonance 
zones than the primitive actions of the systems. These new invariants depend on the 
primary resonance which is considered and will be studied in section 4. 

2. Time evolution of classical quantities during adiabatic switching 

For every starting point in phase space, after each bounce of the particle on the 
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boundary during the adiabatic switching, turning points can be determined in 
spheroidal prolate coordinates. These turning points are needed to calculate the 
classical actions given by equations (1-9). 

The upper limit E' of the E variable is given by the boundary of the prolate cavity 

1 p+l 
E --In- 
'-2 p - 1  

where ,U is the deformation of the cavity defined by the semi-axis ratio (I-~)I. For the 
other turning points of the canonical momenta, L,#O levels are distinguished from 
L, = 0 levels. 

For L,#O levels we have 
~,,=cosh-' {l(l - -+1 ) +- l[( l  --1 )' +4A2 1'")'" 

2 2  2 2  

~,,=cos-1{i(-$+1) -i [ ( ~ - 1 ) ' + 4 ~ ~ ] ~ ' ~ } " '  

with 

kf 

where k, f and C are defined by (I-S), (1-2) and (1-6). respectively. Of course, the 
separation constant Cis always positive for levels with L,#O [4]. 

For levels L,=O we have still two different cases depending on the topology of the 
classical trajectory. 

e< 1 corresponds to the classical trajectory with an ellipsoidal caustic; in this case 
we have 

E,, = cosh-'(: ) 
.$=o. (46) 

e> 1 corresponds to the classical trajectory with a hyperboloidal causiiic which 
happens after crossing the separatrix, then 

Eg=O ~ (44 

where e is always defined by (36). 
Starting from one particular initial condition it is thus possible to take snapshots of 

the canonical momenta P,(E) and p&), defined by (I-6), as functions of E and 5, at 
different time of the adiabatic switching. Figures l(a) and l(b) correspond, respecti- 
vely to the L, = 2 and L, = 0 levels belonging to the spherical (lh) multiplet. Figure 
l(a) shows that the turning point coordinate is decreasing as the deformation or the 
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Figure 1. The canonical momenta pe(z) and &(E) are drawn at ten different steps of the 
adiabatic switching, namely for ten different deformations, for two levels startingfmm the 
(lh) spherical multiplet. Invariance of classical actions imply that each curve surrounds a 
constant surface wbich is precisely proportional to the corresponding action. (a) L,=2 
level; (b) L:=O level. In the latter case, the crossing of the separatriw is obvious. 

switching time increases, even though the corresponding coordinate Eo is increasing. 
The maximum values of the canonical momenta p , ( ~ )  and p&) evolve in just the 
opposite direction of c0 and Eo, respectively, to ensure conservation of the area, which 
in principle represents the associated actions. The momentum p.(e) changes abruptly 
its sign when the particle hits the boundary for 

The semiclassical trajectories associated with levels L,= 0 start with an ellipsoidal 
caustic at the beginning of the switching, thus Eo=O and sois non zero, as can be seen 
in figure l(b). Thus the momentum p&) takes its lowest maximum value. During 
switching, Eo remains zero when eo decreases as the deformation increases until the 
crossing of separatrix for which the two tuming points Eo and c0 are both zero. After 
the separatrix, Eo is never zero and is always zero. In order to conserve the area 
enclosed in each curve, the maximum value of p&) must increase as seen in figure 
l(b). The variations of the maximum value of pc(&) depend on the level under 
consideration. Obviously, the actions are calcuiated by numerical integration of the 
analytical functions corresponding to the canonical momenta given by (1-6) between 
the tuming points and the boundary, at each step of the adiabatic switching. 

Figures 2 and 3 show the time evolution of the two classical actions I ,  and lE 
defined by (I-9), in a probate cavity during the adiabatic switching, i.e. when the 
deformation ,U is increased from its spherical value ,U = 1 to the final value ,U = 2. This 
time evolution is presented for five randomly chosen initial points in phase space, 
which all together fulfil the EBK quantization conditions [3-51 in a spherical cavity. 
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Figove 2. Time evolution of the classical actions during adiabatic switching, corresponding 
to five different initial conditions in the spherical cavity. If the actions were exactly 
conserved, they should take the constant value materialized by the dashed line. Frame 
2(a) corresponds to the L,=l  level, frame 2(b) to the Lx=O level, each of them starts 
from the (Id) spherical multiplet. The switching time corresponds to about XOOO and 
20 WO bounces of the particle for the L,= 1 and L,=O levels, respectively. 

The time dependence of the two actions I, and I, is obviously presented for .the same 
starting initial conditions. Exact invariance of the actions during adiabatic switching 

, .means that they take constant values which are materialized by dashed lines in each 
frame. 

First. let us look for the L,#O levels in figures 2(a) and 3(a). For any initial 
conditions, the actions I ,  and I5 change abruptly for the particular values of the 
deformation aroundp= 1.48 andp= 1.42for the L,= 1 and LZ=2levels, respectively. 
However, the relative deviations from the exact semiclassical values are small, less 
than a few in the most unfavourable case. Moreover, the actions I ,  and lE evolve 
in opposite directions after crossing these special deformations in relation to the exact 
semiclassical actions. Before the discontinuity, we can see that the actions are 
oscillating around an average value very close to the expected constant values-the 
relative deviations are now less than a few The'small oscillations, around the 
exact semiclassical values, are due to the necessary choice of a finite switching time in 
practical calculations. Their amplitudes could be reduced significantly by increasing 
switching time. After the discontinuity, the actions are still oscillating but now around 
different values reached during the crossing of this discontinuity. 

The situation is more confused for the L,= 0 levels shown in figures 2(b) and 3(b). 
There, the crossing of the separatrix is expected when the semiclassical solution 
changes from trajectories having an elliptical caustic-for small deformation-to 
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Figure 3. As figure 2. but for two levels starting from the ( l h )  spherical multiplet. namely 
L,=2 in 3(a) and L, = 0 in 3(b). Now, the particle bounces 23 OOO and 28 800 times on the 
boundary for the L,=O and L,=2 levels, respectively. 

trajectories having a hyperbolical caustic-for large deformations-and consequently 
the adiabatic approximation must fail. Thus, at the crossing of the separatrix, as one 
intrinsic period of the system becomes infinite, the switching time is then not greater 
than the two characteristic periods of the system, as required. The separatrix is 
crossed [4] for p,,=1.281025 and for pc,=1.616581 for the two L,=O levels 
presented in figures 2(b) and 3(b), respectively. For these two deformations, we 
observe sudden variations of the actions, and we notice that relative deviations around 
the exact semiclassical values are small, less than a few lob3, in the most unfavourable 
case on the whole deformation range. But, in figure 2(b), for the L,=O level issued 
from the (Id) spherical multiplet, other abrupt variations of the two actions occur for 
values of the deformation around$= 1.42 and 1.74. These large deviations from exact 
invariance occur also for the L,=O level shown in figure 3(b), around p =  1.48 and 
p =  1.71. This phenomenon, shared with the L,#O levels previously discussed, 
appears always for particular values of the deformation and simultaneously for the 
two actions, it is independent on the initial conditions. Again, we must notice opposite 
behaviour of I, and It with respect to the values of reference. This generic behaviour is 
clearly shown in figures 2(b) and 3(b). Another striking feature is that the fluctuations 
of the actions which occur around these specific values of the deformation are of the 
same order of magnitude as those which correspond to the separatrix crossing. In 
addition, we have also small oscillations around an average mean outside the 
particular set of deformations discussed above. 

In order to enlighten all our previous comments let us draw the classical trajector- 
ies in the vicinity of the values of the deformation corresponding to the more abrupt 
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changes. Figures 4 and 5 show the classical trajectories that have been reached during 
adiabatic switching for some specific values of deformation. The switching is of course 
stopped during the evolution of the particle. Figure 4 shows the classical trajectories in 
the ( p ,  z) plane which is rotating with the particle around the symmetry axis Oz. On 
the left of figure 4, the classical trajectory drawn for the deformation p= 1.421 594 
which corresponds to the L,=2 level issued from the (lh) spherical multiplet has 
clearly two frequencies which become resonant in the ratio 41. It is similar this time 
for p= 1.475 011 for the L,=l  level, shown on the right of figure 4, which is issued 
from the (16) spherical multiplet. These two values of p are very close to the points 
where the classical actions I, and IF were changing abruptly (see figures 2 and 3). 

Classical trajectories for the L,=O levels, which are deduced from the (Id) and 
(lh) spherical multiplets are shown at the top and bottom of figure 5, respectively, for 
different values of the deformationp. Each of them has been reached during adiabatic 
switching and corresponds to deformations for which the classical actions change 
abruptly (see figures 2(b) and 3(b)). Again trajectories are drawn in an arbitrary (x, z)  
plane perpendicular to the angular momentum of the particle, while adiabatic 
switching has been stopped the particle bounces 50 times on the boundary b,efore one 
ends the calculation. The trajectories corresponding to the L,=O level belonging to 
the (Id) spherical multiplet clearly have a hyperbolical caustic which means that the 
corresponding deformation valuesp = 1.416 556 andp = 1.739 113 are greater than the 
value fisc,, for which the semiclassical level lies on the separatrix. This is in agreement 
with our previous discussion of figure 2(b) where the crossing of the separatrix is 
located atpsp= 1.281 025. It is also obvious that the trajectory drawn forp = 1.416 656 
is a resonant one, the ratio of the radial frequency over the angular frequency is 3:l. 
The same ratio is now 4:l for the trajectory corresponding t o p =  1.739 113. Similar 
conclusions hold for the L, = 0 level starting from the (lh) spherical multiplet, but now 
the classical trajectories have either an elliptical caustic or a hyperbolical caustic 
corresponding, respectively, to the deformation valuesp= 1.479 654 andp = 1.705 591 
which enclose the value psep = 1.616 58 for which the semiclassical level lies on the 
separatrix. The frequencies ratio is 3:l for both trajectories in this case. We should 
notice. that all these trajectories for the Lz#O levels are resonant but not periodic, 
because there is not necessarily commensurability with the motion around the z axis. 

In this section, we have shown that classical actions are very well conserved during 
adiabatic switching, except for wme deformation values for which sudden changes of 
the actions occur. Some of them could be understood by the crossing of a separatrix in 

Figure4. Classical trajectories corresponding to values of the deformation where the 
semiclassical actions change abruptly, in figures 2 and 3,  during adiabatic switching. Two 
trajectories for two L,#O levels are shown here they are drawn in the (p .  I) plane which is 
rotating with the particle around the symmetry axis Oz. Left: LI=2 level starting from the 
( lh)  spherical multiplet. Right: L,=l  level starting from the ( I d )  spherical multiplet. 
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Figure 5. As figure 4 but for the L, = 0 levels. We study here the trajectories that occur at 
resonance, i.e. apart from the separatrix at  the place where the classical actions change 
abruptly during adiabatic switching in figures 2 and 3. The classical trajectories are drawn 
in the neighbourhood of these two deformations on a plane (x.2) perpendicular to the 
angular momentum of the particle. Top: trajectory for the L,=O level that starts from the 
( I d )  spherical multiplet. The two periodic trajectories have the same topology with a 
hyperbolic caustic. Bottom: trajectory for the L,=O level that starts from the (lh) 
spherical multiplet. For the lower deformation, the periodic trajectory has an elliptic 
caustic and for the greater deformation, the periodic trajectory has a hyperbolic caustic. 

. the case of the L,=O levels. Other changes correspond to some resonant trajectories 
where the ratio of two intrinsic frequencies of the motion become commensurate as 
3:l or 41. The prolate cavity is one of few systems for which intrinsic frequencies of 
the motion could be calculated analytically, which will be done in the next section. 

3. Frequencies of the motion in a prolate cavity 

The components of the frequency vector in an integrable system are just the first 
derivatives of the Hamiltonian function with respect to the classical actions. Here we 
are dealing with a system which remains integrable during adiabatic switching. We will 
start with motion inside a spherical cavity and we will extend our results to the prolate 
cavity. 

3.1. Inkinsic frequencies of the motion in a spherical cavity 

For a free particle of unit mass inside a spherical cavity of radius Ro, the radial action I, 
of the motion is written as [ 5 , 6 ] :  

n V Z  Ro{ (1 - (y)'Q-$ cos-1 (31 



Semiclassical quantization in a prolate cavity 4775 

where E is the energy of the particle and R is the radius of the spherical caustic fixed 
by the conservation of classical angular momentum [5] 

h- I +: =SE R .  (6) 

Using (5) and (6) ,  a straightforward calculation gives the radial frequency 

In order to calculate the angular frequencies we must notice that in a spheriical cavity 
the particle covers its trajectory which is lying on a plane perpendicular to the angular 
momentum. Therefore, we can choose two different systems of coordinates, the usual 
spherical one (r, 0, q4)  and the other (r, tp) on the plane of the trajectory. As the 
kinetic energy T of the particle is a constant in any system and a polynomial of degree 
2 under the momenta p ,  we can write 

2T= 2 piq; 
i 

thus 

Pa +P@ d$ = P Y  d, (9) 

where pa, po and pY are the canonical momenta associated with the coordinate 0, q4 
and tp, respectively. In a plane (p, z) which is rotating with the particle around the z 
axis, the motion is confined by the boundary of the cavity, of course, by a caustic circle 
of radius R, given by (6) and by two straight l i e s  which make an angle 0, and H -  0, 
with the z axis given by 

LZ sin 0, = -. 
1, 

If we integrate (9) over one cycle of the angular motion, we get 

which could be read as 

Io= I* - I@. (1lb) 

Obviously, in this simple case, we may identify IY and Z+ with and L,, 
respectively, thus we have a first relation by using (6): 
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The motion is singly degenerate as it is for all central forces 171. A straightforward 
calculation using (5)-(11) gives 

air - 
dE al, S E I &  
ai, ai, 1R 

w =-=--= 

- aE [I-&] 

Finally, the ratio of the radial and angular frequencies is written as 
W. Jc z 

In the preceding equation, the radius R of the spherical caustic is never zero due to the 
Langer correction in the definition of the classical angular momentum. The upper 
limit of R is of course the radius Ro of the boundary giving the important relation 

for any motion in a spherical cavity, corresponding to a semiclassical eigenstate. 

3.2, Intrinsic frequencies of the motion in a prolate cavity 

In this case, analytical dependence of the energy on the classical actions is not known, 
but the classical actions re, I, and I+, defined by (1-9) are functions of the three 
constants of motion, namely the energy E, the scalar product C defined by (1-6) and 
the projection L, of the angular momentum along the symmetry axis. If J(Ie, I,; E, C) 
and J(Ia, I,; L,, C)  are the two Jacobians of the transformations associated with the 
variable changes (IG, It)  to (E, C), and (Is, I F )  to (Lz, C ) ,  respectively: 

ar, ai, ai, ar, 
aL,ac a c a ~ ,  J(I., I,; L,, C )  = - - - - -. 

Then, following Gutzwiller and Strutinsky [8], the frequencies of motion are defined 
by 

In calculating the partial derivatives needed to know the radial and angular 
frequencies of the motion, defined by the preceding equations, we have to derive an 
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integral, the limits of which depend on the variables. Fortunately, in our case these 
limits are precisely the turning points, defined by (2)-(4) for which the momenta 
vanish. Therefore, after a tedious but straightforward calculation, we obtain 

where F(x, m) is an elliptic integral of the first kind [9],  defined by 

F(x, m) = (1 - m sin2x)-1/2 dx I: 
with 

cos’ 6, m=- 
cosh’ eo 

where e,, 
obtained in the same way: 

and &,are defined by (1)-(4). The ratio of the two angular frequencies~is 

where ?E (x, m‘, m) is an elliptic integral of the third kind 191 given by 

(1 -m’ sin’x)-’(l-m sin2x)-”’dr (214 

with 
1 m’ =- 

cosh’ E”‘ 

At each step of the adiabatic switching the prolate cavity remains integrable. The 
turning points of the momenta can be determined at every bounce with the boundary, 
and the classical actions are then defined. The knowledge of turning points, at each 
step allows calculation of the frequency ratios given by (18) and (20). Before giving 
the numerical results, let us notice some particular cases which are of interest for the 
L, = 0 levels. 

First, the ratio of the two angular frequencies, given by (20), is always vanishing in 
this case. In fact, in more detail we found that w,is proportional to L,. It can be seen 
also in (20) that (4) gives the special values m= m’ =e2 for a classical trajectory with 
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Figure6. Ratio of the radial (U,) to the angular (U<) intrinsic frequencies of the motion 
for the levels starting from the (Id) spherical multiplet, as a function of the deformationp 
during adiabatic switching. For any k e d  deformation, each curve is labelled by a definite 
value of L, which increases with mJmc (L,=O,1,2). The dashed tines determine the 
deformations for which the WO frequencies become commmensurate, in the ratios 3:l and 
41.  

an elliptical caustic and m= ll2, m' = 1 for a classical trajectory with a hyperbolical 
caustic. Thus 

V ,  for the L, = 0 levels. (22) 
% -=o 
WE 

Second, the semiclassical level crosses the separatrix for the value p =pxp which 
corresponds to e = 1. Therefore, in this special case we have m = 1 and thus F(n12, m) 

'. becomes infinite. The angle x, given by (196), is written as 

which implies that x is always less than nl2, in the deformation range under study. 

8.0 7, 

Figure'l. As figure 6 but for the (Ih) spherical multiplet. Here the frequencies of levels 
withL,=O, 1,2,3,4 and 5 are plotted. 
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Finally, the ratio defined by (18) has a finite value when the semiclassical level lies on 
the separatrix: 

for the L, = 0 levels we 

0 5  
- (,u=,usep) = 2  

The ratio of interest for our purpose is given by (18), its limit for the spherical 
symmetry is given by (14). Figures 6 and 7 show the quantities o , / w e  as a function of 
the deformation ,u for the levels belonging to the (16) and ( lh)  spherical multiplets, 
respectively. Each curve corresponds to a definite value of the projection L, of the 
angular momentum; for any k e d  deformation p, increasing L, correspond to an 
increase of the ratios wJwe Each of the different curves is deduced from a single 
initial condition chosen among the 25 which were previously used in order to calculate 
the averaged energy as a function ofp.  This frequency ratio is a function which is not 
sensitive to the initial conditions and its fluctuations can be neglected for our purpose. 
The ratios wJo,  begin at the value determined by w,/ws, given by (14), for the 
spherical symmetry (,u = l), this ratio does not depend on L,. The dashed lines are 
drawn for the specific values encountered when the two frequencies w, and U, become 
commensurate in the ratios 3:l and 4 1 .  Figures 6 and 7 confirm the conclusions of the 
preceding section. More precisely, in figure 6, the L, = 0 level is associated with two 
intrinsic frequencies we and w, which become commensurate to 3:l and 4:l on the 
same side of the separatrix for which the ratio wJw, is just 2. The corresponding 
values of the deformation were found more or less clearly in discussions of figures 2 
and 5. When the two frequencies w, and wE become commensurate to 3:l and 4:1, it is 
clearly seen that the associated trajectories have the same topology with a hyperboloi- 
dal caustic. One peculiar event occurs for the L,= 1 level in figure 6. When the two 
frequencies become commensurate to 3:1, which occurs for a deformation around 
1.14, the semiclassical actions I, and I, are not very sensitive to the crossing of this 
resonance zone, as is seen in figure 2(a). On the contrary, the change is very abrupt 
exactly when the two frequencies are commensurate in the ratio 41. The same 
conclusion holds for the L,=2 level belonging to the same spherical multiplet. In 
figure 7, we notice that the ratio w,/we for the spherical symmetry is now greater than 
3:l and therefore this resonance will act only on the L,=O level. For this level, the 
frequencies become commensurate to 3:l before and &er crossing the separaatrix, 
which means that each of the trajectories associated with these particular values of the 
deformation must have different caustics, as shown by figure 5. The deformation 
range under study does not allow the semiclassical L, = 0 level to cross the resonant 
zone corresponding to the ratio 41 therefore, this zone has no effect on this level for 
p<2 as was the case for the previous multiplet. In the same way, as the ratio w j w s  is 
always greater than 3 for all the other levels belonging to the same spherical multiplet, 
the L, = 2 level, in particular, crosses a rewnance 41 for the deformation already 
found in the preceding discussion of figures 3 and 4. As mentioned before for the 
L,= 1 level, we notice that other resonances, like 5:l; seem to have no influence on 
the classical actions. The same conclusions are drawn for the other L,#O levels which 
are sensitive only to the lowest 4:l resonance, even if the semiclassical eigenstate 
crosses resonances of greater order (up to 7:l for the L,=5 level for example, in 
figure 7). We must underline also that all these effects are decreasing in intensity with 
increasing values of L, inside the same spherical multiplet. 

A careful analysis of the separatrix crossing was done by Skodje and Cary [lo] in 
the case of a ID-symmetric quartic double well varying with the time. In this one- 

~ ~ 
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dimensional problem, where some approximations allow calculation of a crucial 
crossing parameter, it is possible to follow the instantaneous frequency and action 
during the switching. The separatrix crossing is seen by an increasing amplitude of the 
oscillating action and, as expected, by a discontinuity of the intrinsic frequency. The 
same general behaviour is qualitatively seen in the ZD problem studied here. Adiabatic 
switching for non-integrable systems, and especially crossings of resonances, was 
studied by Reinhardt [ l l ]  and Chirikov [12], for the standard map. In this ID map the 
leading order correction to the action is determined and studied when a resonance is 
crossed during switching. 

In the following section, we will verify the hypothesis [13,14] that a canonical 
transformation on the action variables help to avoid such resonance zones. In the 
prolate cavity, we have already all the necessary quantities to construct numerically 
such a transformation and determine if the conservation of the new invariant is 
improved. 

4. New invariants around resonance zones 

For ZD Hamiltonian systems, it has been stated [13,14] that by using appropriate 
canonical transformation on the action-angle variables a strategy could be imple- 
mented for avoiding resonance zones during adiabatic switching. In fact, deviations 
around exactly conserved invariants can be minimized when the semiclassical solution 
of the unperturbed Hamiltonian is closed to a resonance. In the preceding section, we 
found that the particular spherical multiplet levels under study were precisely closed 
to the resonances 3:l and 4 1  which were clearly correlated to small non-conservation 
effects of the classical actions during adiabatic switching. Therefore, we have in this 
particular case-as the actions are calculated at each step of the switching-all the 
quantities needed to verify that we can numerically build a best invariant than the 
previous two actions I. and Z? 

It is shown in [13] and [14] when the two intrinsic frequencies wl, w2 of 2 0  

Hamiltonian system become commensurate (in resonance), i.e. w1 :w,=s:r, where s 
and r are integers, that a new action i can be built 

which becomes a proper adiabatic invariant. In the case of accidental degeneracy 
which is relevant here, the theory leads to a Hamiltonian which is isomorphic to that 
of the pendulum [12-141; crossing of the resonance is then seen as crossing the 
separatrix in the appropriate new variables. 

During adiabatic switching, we showed that intrinsic frequencies U, and wg of the 
motion could be calculated at each step for the free particle inside a prolate cavity. 
Correlations between resonances and abrupt changes in the actions and i. and I, are 
clearly established by the preceding section. We also noticed that, in the vicinity of a 
resonance, when one action I ,  is increasing (decreasing), the other Z, is decreasing 
(increasing), but these variations were not of the same amplitudes for a given level 
and depended on the semiclassical eigenstate under study. Thus, we can build at each 
step of the switching a new action i defined by the following linear combination 

when the semiclassical level crosses the resonance 

i= SI, + TI2 

I= SI, i- T I ,  (244 

w,: wE= s:r (Xb) 
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during adiabatic switching; s and r are integer. Figure 8 shows the variation o f f  as a 
function of the deformation p for the LT = 2 and L, = 0 levels starting from the (lh) 
spherical multiplct. First, we must notice that for the deformation range under interest 
here, i is relatively a better invariant than the actions I ,  and I ,  alone. In both cases, 
relative deviations of i from the exactly conserved invariant are at least one order of 
magnitude less than they were for I, and I,, as seen by comparing figure 8 with figure 3. 
Second, looking in more detail, the L,=2 level has a very clear behaviour, but the 
situation is more confused with the Lz=O level. For the deformation, which corre- 
sponds to the resonance w,:w5=41, which is indicated by an arrow on the right-hand 
part of figure 8(a), the new action defined by (24) is even better conserved than for 
other values of p, and this for any initial conditions. The same behaviour occurs for 
other semiclassical L,#O levels which cross only one resonance during adiabatic 
switching. For the L,=O level, shown in figure 8(b), the semiclassical eigenstate 
crosses the resonance o,:w,=3:1 twice: once before crossing the separatrix of the 
motion itself, located at pwp= 1.616 581, and the other after the separatrix. In figure 
8(b), even if the global deviations from the exactly conserved value are smaller than 
those already obtained for each action I ,  or I,, there is no clear signature of crossing a 
resonance in the zones indicated by arrows. Therefore, even if the system remains 
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Figures. Two new invariants f a r e  studied during adiabatic switching; they are derived 
from the resonance m; q = s : r ,  where s and r a r e  integers, which are cro:ised by the 
semiclassical level. The C U N ~ S  showing f a s  a function of the deformationp are drawn for 
the five randomly chosen initial conditions already used in figure 3. Frames (a) correspond 
to the L,=2 level and 4:l resonance, frames (b) to the L>=O level and 31  resonance, 
both belonging to the (lh) spherical multiplet. The right-hand side is an enlargement of 
the left-hand side around the resonance zones. Resonance locations indicated by arrow. 
were exactly determined for figures 3.4,s  and 7. 
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integrable for any deformation, we are dealing with a special case where the two 
resonance zones are closed to the deformation for which the semiclassical eigenstate 
crosses the separatrix, which implies this unclear signature. 

If we consider the L,=O level, starting from the (lg) spherical multiplet, for 
example, the semiclassical eigenstate crosses twice the resonance 3:1, before and after 
the separatrix and a little bit after the resonance 4:l; therefore, two different local 
invariants !can be built. In this latter case, only the first invariant encountered during 
the adiabatic switching is significant. Indeed, after crossing the first resonance, the 
semiclassical trajectory crosses the separatrix and only later reaches the second 
resonance 4 1 .  Before this point, the variations of the actions around the exactly 
conserved value, due to the crossing of the first resonance and of the separatrix, are, 
relatively, too large, and a second invariant cannot be built. 

5. Conclusion 

The simple but non-trivial case of a free pafiicle inside a prolate cavity gives us a good 
opportunity to test the adiabatic switching method in detail. In the present case, the 
classical actions associated with the motion were calculated at cach step of the 
adiabatic switching, i.e. after each bounce of the particle on the boundary. Time 
evolution of the two classical actions during switching has shown many interesting 
features. First, as was expected from the beginning, the classical actions remain 
constant with a good accuracy as the deformation of the cavity is adiabatically changed 
from a spherical to a prolate shape. Second, small oscillations around the exactly 
conserved value arc related to the practical necessity of a finite switching time. In this 
way the solution depends on the initial conditions, i.e. on the angle variables. Third, 
crossing the separatrix, for the L,=O eigenstates, is clearly followed by abrupt 
changes of the actions in a small range sharply beginning at the semiclassical value of 
the deformation. Finally, abrupt changes on the actions could be seen for other values 
of the deformation, not only for the L,=O levels but also for the L,#O levels. The 
amplitudes of these changes are similar to those occurring for a separatrix crossing in 
the L, = 0 case. Such strange behaviour can be observed only once or more often, at 
special values of the deformation and depending on the eigenstate under study. It was 
shown that classical trajectories corresponding to such variations on tne actions are all 
corresponding to resonances w,:wF =3: 1 and 4 1  between the radial w, and angular 

frequencies. It was confirmed analytically that crossing of the primary resonances 
3:l and 4 1  are precisely correlated to abrupt variations of the classical action during 
adiabatic switching. Discontinuity on the ratio w,:wg, for the L, = 0 levels, is exactly 
related to separatrix crossing. For other leveis, w,:wF is a smooth function of the 
deformation which crosses resonance zones other than 3:l and 41;  the other 
resonances do not produce any effect on the action conservation. In conclusion, we 
have clearly shown how to understand the classical actibns behaviour during adiabatic 
switching in the particular case of a prolate cavity. The method proposed to build a 
new invariant [U] is well verified in the case of levels for which there is an isolated 
crossing during adiabatic switching. Unfortunately, the method is of less interest when 
several are either closed together or are present with a separatrix during adiabatic 
switching. Finally, by checking carefully at each step every quantity, we have been 
able to study the domain of validity of the adiabatic switching method in the case for 
which it is more appropriate: an integrable system with simple separatrix crossings. In 



semiclassical quantization in a prolate cavity 4783 

this case, as shown in I, the method provides a physically interesting classical frame 
' with which one is able to follow the behaviour of the whole spectrum with deforma- 
tion. There are, however, cases not discussed in our paper for which the crossing of 
the separatrix involves a semiclassical approximation that goes one step beyond the 
EBK approximation, as in the oblate cases. There it is known [15] that one has either 
two solutions or zero solution at the separatrix crossing and that it is necessary to use a 
uniform approximation. Such crossings are outside the field of a simple theory like 

I 

ASM. 
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